Paracetamol-induced renal tubular injury: a role for ER stress.

نویسندگان

  • Corina Lorz
  • Pilar Justo
  • Ana Sanz
  • Dolores Subirá
  • Jesús Egido
  • Alberto Ortiz
چکیده

Paracetamol (also known as acetaminophen) causes acute and chronic renal failure. While the mechanisms leading to hepatic injury have been extensively studied, the molecular mechanisms of paracetamol-induced nephrotoxicity are poorly defined. Paracetamol induced cell death with features of apoptosis in murine proximal tubular epithelial cells. While paracetamol increased the expression of the death receptor Fas on the cell surface, the Fas pathway was not involved in the paracetamol-induced apoptosis of tubular cells. The mitochondrial pathway was not activated during paracetamol-induced apoptosis; there was no dissipation of mitochondrial potential or release of apoptogenic factors such as cytochrome c or Smac/DIABLO. However, paracetamol-induced apoptosis is a caspase-dependent process that involves activation of caspase-9 and caspase-3 in the absence of cytosolic cytochrome c or Smac/DIABLO. The authors also detected induction of endoplasmic reticulum (ER) stress, characterized by GADD153 upregulation and translocation to the nucleus, as well as caspase-12 cleavage. Interestingly, after treatment of murine tubular cells with paracetamol and calpain inhibitors, the caspase-12 cleavage product was still detectable, and calpain inhibitors were unable to protect tubular cells from paracetamol-induced apoptosis. The results suggest that induction of apoptosis may underlie the nephrotoxic potential of paracetamol and identify ER stress as a therapeutic target in nephrotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy.

Our previous studies have suggested a critical role of reticulon (RTN)1A in mediating endoplasmic reticulum (ER) stress in kidney cells of animal models and humans with kidney diseases. A large body of evidence suggests that proteinuria itself can cause tubular cell injury leading to the progression of kidney disease. In the present study, we determined whether RTN1A mediates proteinuria-induce...

متن کامل

Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy p...

متن کامل

Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy

Hyperuricemia contributes to kidney tubular injury and kidney fibrosis. However, the underlying mechanism remains unclear. Here we examined the role of RTN1A, a novel endoplasmic reticulum (ER)-associated protein and ER stress in hyperuricemic nephropathy. We first found the expression of RTN1A and ER stress markers was significantly increased in kidney biopsies of hyperuricemia patients with k...

متن کامل

Antioxidant properties of repaglinide and its protections against cyclosporine A-induced renal tubular injury

Objective(s): Repaglinide (RG) is an antihyperglycemic agent used for the treatment of non-insulin-dependent diabetes mellitus. It has a good safety and efficacy profile in diabetic patients with complications in renal impairment and is an appropriate treatment choice, even for individuals with more severe degrees of renal malfunctions. The aim of the present study was to examine the protective...

متن کامل

Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes

Renal tubular injury is a critical factor in the pathogenesis of diabetic nephropathy (DN). Endoplasmic reticulum (ER) stress is involved in diabetic nephropathy. Tauroursodeoxycholic acid (TUDCA) is an effective inhibitor of ER stress. Here, we investigated the role of TUDCA in the progression of tubular injury in DN. For eight weeks, being treated with TUDCA at 250 mg/kg intraperitoneal injec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2004